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An Anatomical Investigation of Higher Visual Structures in the Pigeon (Columba livia) 

Tadd B. Patton 

Abstract 

 Early visual processing in the avian brain has been studied extensively, the retina 

and midbrain in particular. However, a clear understanding of the higher visual centers in 

the forebrain (the telencephalon and thalamus) remains poor. Two structures located 

within the avian visual telencephalon, the entopallium (E) and the lateral portion of the 

intermediate nidopallium (NIL), merit extensive investigation based on their critical role 

in visual processing. The goal of the current study was to further clarify the anatomical 

characteristics of E and NIL. Visual information that reaches these telencephalic 

structures is mostly from the contralateral retina. Thus, blocking visual input on one side 

affects the opposite hemisphere, but leaves the hemisphere on the same side largely 

unaffected. This unique property of the avian visual system was used in order to 

emphasize neurochemical expression in the higher visual structures. After blocking visual 

input to one hemisphere either by monocular occlusion or unilateral lesion of the nucleus 

rotundus we examined the expression of specific neuroanatomical markers; namely 

cytochrome oxidase (CO) and the calcium binding protein, parvalbumin (PV) in E and 

ZENK protein expression in NIL. . Our results showed there were significantly more PV-

ir cell bodies in the inner region of E compared to the outer region. In terms of PV-ir 

neuropil, regional differences within E were significant. In particular, the ventrolateral E 

tended to have a higher density of PV-ir neuropil than other regions except the most 
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ventromedial area which was also high in PV-ir. Differential CO staining patterns were 

observed as well. However, unlike PV-ir neuropil the ventro-intermedial area showed a 

low level of CO staining compared to the other areas. Finally, there was a significant 

reduction of ZENK-ir cell bodies on NIL in the experimental hemisphere compared to 

control side. Based on this differential expression of ZENK, it was possible for the first 

time to visualize the location of NIL. The findings presented here are discussed in terms 

of their relevance to the identification of the size and extent of NIL and the 

heterogeneous nature of E. 
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Introduction 

 

Birds have superb visual abilities that are on par and sometimes better than those 

of highly visual primates (Hodos, 1993; Frost & Sun, 1997; Shimizu, Patton, & 

Szafranski, 2008). Birds use these abilities to locate food sources, find a potential mate, 

remain vigilant against predators, and avoid obstacles during flight. Such well-developed 

vision makes the avian brain an excellent model for investigating the underlying 

mechanisms which drive these abilities and for the comparative analysis of complex 

visual systems in general. The goal of this investigation was to clarify the anatomical 

characteristics of two important visual structures in the avian cerebrum (telencephalon). 

There are numerous anatomical and physiological studies that have investigated 

the early stages of visual processing in birds, the retina and structures within the midbrain 

in particular. In contrast, a clear understanding of the higher visual centers in the 

forebrain (the telencephalon and thalamus) remains unclear. Two structures located 

within the avian visual telencephalon, the entopallium (E) and the lateral portion of the 

intermediate nidopallium (NIL), merit extensive investigation based on their critical role 

in visual processing. The current study focused on anatomical properties of these two 

structures.  

This investigation had three main objectives: 1) to clarify the anatomical and 

physiological subgroups of E, 2) to anatomically define the higher visual structure, NIL, 

and 3) to determine the degree to which neural activity in E and NIL are dependent on 

visual information. Each of these specific aims was investigated through the examination 
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of neural activity detected by the expression of various neurochemicals (i.e., a 

mitochondrial enzyme, a calcium-binding protein, and an immediate-early gene).  

This set of experiments was one of the first systematic anatomical studies to 

employ lesion and occlusion techniques to directly analyze the higher visual structures, E 

and NIL. Furthermore, the results reported here are important because they provide 

information that can be used to examine the similarities and differences of the visual 

systems between phylogenetically remote animal classes, birds and mammals. 

Furthermore, based on such comparisons with the mammalian system, the findings in the 

current study can be used to understand the general and specific neural principles for 

visual processing. 

 

General Background 

Visuo-cognitive abilities of birds. 

The remarkable visual and cognitive abilities of pigeons have been demonstrated 

both in the laboratory and field. Using operant conditioning techniques, researchers have 

shown that birds can be trained to categorize a variety of visual stimuli. Pigeons 

(Columba livia) have been trained to respond differently to the presence or absence of 

photographic images of humans (Herrnstein & Loveland, 1964), trees, bodies of water, a 

particular person (Herrnstein, Loveland, & Cable, 1976), and different styles of painting 

(Watanabe, Sakamoto, & Masumi, 1995; see Huber, 2001 for review). Based on these 

studies, some authors argue that pigeons can form “concepts” of these objects through 

discrimination training (Lubow, 1974; Cook, Cavoto, & Cavoto, 1995; Watanabe, Lea, & 

Dittrich, 1993). 
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Several bird species also have remarkable visual memory ability. For example, it 

is well known that food-caching birds, such as the Western Scrub-jay (Aphelocoma 

californica), will harvest food and store it in different locations when food is abundant 

and then return to these caches at a later time as food becomes scarce (Sherry, Krebs, & 

Cowie, 1981; Shettleworth, 1983; Sherry, 1984; Shettleworth & Krebs, 1986). One 

particularly impressive example comes from the behavior of the Clark’s nutcracker 

(Nucifraga columbiana). In the late summer and early fall, these birds will store over 

30,000 seeds in various locations and recover the majority of them later in the winter 

(Vander Wall & Balda, 1977). Discrimination studies in laboratories have shown that 

even non-food storing birds, such as pigeons, also have extraordinary visual memories 

(Vaughan & Greene, 1984; Cook, Levision, Gillet, & Blaisdell, 2005). In the study by 

Cook et al. (2005), pigeons were trained to remember large numbers of photographs, each 

of which were randomly selected to be associated with the choice stimulus on the left or 

right side. The results showed that pigeons can memorize between 800 and 1,200 picture-

response associations. 

It is clear why food-storing birds have such remarkable memory capacity as this 

ability is crucial to their survival. But, why do pigeons and other birds have such 

remarkable visuo-cognitive abilities? In addition to the foraging purpose for food-storing 

birds, one possible important reason for these abilities is that birds use them to survive in 

a highly developed social world. Birds must be able to quickly tell the difference between 

predator and prey, as well as locate a potential mate. Success at each of these behaviors 

requires the ability to recognize which animals are members of their own species and 

which are not. As described above, many discrimination studies use operant conditioning 
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techniques to investigate how pigeons process complex natural objects, including social 

stimuli. However, because these operant procedures essentially require birds to 

discriminate such stimuli for access to a food reward, it is possible that the birds 

discriminate the stimuli using strategies that are very different from those they may use in 

their natural setting. Under the operant conditioning paradigm, birds may be able to 

discriminate photographs of conspecifics based on small details (Brown & Dooling, 1992, 

1993). But again, one cannot conclude that birds use such details to discriminate 

individuals in the real world. An instructive alternative to the operant conditioning 

paradigm is to measure a subject’s natural responses to ecologically relevant stimuli.  

A previous investigation conducted in our laboratory (Shimizu, 1998) showed that 

male pigeons exhibit courtship behavior in response to video playbacks of a female 

pigeon. In particular, male pigeons reacted with strong courtship display even when the 

body of the female was covered, as long as the head remained visible. In contrast, only 

weak courtship responses were observed when the head of the video pigeon was covered, 

so that only the female body was visible. This study (Shimizu, 1998) suggested the 

overwhelming significance of the head in conspecific detection and mate selection in 

birds just as in humans. Based on this finding, Patton, Szafranski, and Shimizu (2010) 

examined the significance of different facial features, such as the beak and eyes, by 

analyzing the preference of male pigeon subjects between images of females whose facial 

features were digitally manipulated. The results showed that the beak is important since 

males preferred females with an abnormally large beak. In contrast, the presence or lack 

of the eyes had less of an effect on their preference. This finding is interesting since 

humans and other primates tend to innately pay specific attention to eyes in the face 
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(Farroni, Massaccesi, Menon, & Johnson, 2006). Moreover, the spatial rearrangement of 

these facial features did not affect preference, suggesting that the configural relationship 

of the features is not essential. This is also different from the human data that indicate we 

are sensitive to the spatial arrangement of the facial features (Gauthier & Logothetis, 

2000). These results suggest that although the face and facial features are important to 

birds and humans, the salience of the facial features and thus the meaning of these 

features are fundamentally different between them. These perceptual differences between 

birds and mammals are likely a result of the differences in the underlying neural 

mechanisms associated with such complex visual behavior. 

The current study was an extension of this previous research on avian visual 

cognition to study the underlying neural mechanism for visual processing of complex 

stimuli. Unlike the case of human and non-human primates, it is unclear exactly which 

higher avian brain structures are involved in these sophisticated visuo-cognitive functions. 

Two specific visual structures, E and NIL, were the focus of this study. 

 

Two major ascending visual pathways. 

In all amniotes (reptiles, mammals, and birds), visual information is sent to the 

telencephalon along two ascending pathways: the tectofugal pathway and the 

thalamofugal pathway (Butler & Hodos, 1996; Shimizu & Bowers, 1999). The E and NIL 

are two primary telencephalic structures associated with the tectofugal pathway, which is 

the major route for visual processing in birds. Based on connection patterns, the avian 

tectofugal pathway has been compared to the retino-colliculo-pulvinar-cortical system in 

mammals, whereas the thalamofugal pathway is comparable to the mammalian retino-
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geniculo-cortical pathway (Shimizu & Karten, 1993). In birds, the majority (over 90%) of 

the retinal fibers are sent to the optic tectum (TeO) (the tectofugal pathway) rather than 

directly to the thalamic center of the thalamofugal pathway. This pattern is in contrast to 

that of highly visual mammals, such as primates, in which the retino-geniculo-cortical 

pathway is often a prominent pathway (Shimizu & Bowers, 1999). In the avian tectofugal 

pathway, the TeO, the avian equivalent of the mammalian superior colliculus 

(Güntürkün, 2000; Shimizu, 2001), is a large structure which protrudes laterally between 

the cerebellum and the cerebrum. The TeO is highly laminated, with the superficial layers 

receiving retinotopically-organized input and the deeper layers giving rise to ascending 

efferents. The TeO projects bilaterally and non-topographically to the largest thalamic 

structure, the nucleus rotundus (Rt), the avian equivalent of the mammalian pulvinar 

(Shimizu & Karten, 1991). Multiple subdivisions have been identified within Rt (i.e., 

anterior, central, and posterior Rt) based on analysis of cytoarchitecture, neurochemicals, 

and connections (Benowitz & Karten, 1976; Nixdorf & Bischof, 1982; Karten, Cox, & 

Mpdozis, 1997; Hellmann & Güntürkün, 1999; Laverghetta & Shimizu, 2003). Visual 

information from Rt is further sent to a large nuclear mass in the telencephalon, E, which 

in turn projects to multiple telencephalic structures, including NIL (see Figure 1). 

 

 

 

 

 

 



www.manaraa.com

 7 

 
 
Figure 1. Schematic view of the tectofugal pathway of the pigeon. Information from each 
eye is sent to the midbrain of the opposite hemisphere. In the midbrain is the optic tectum 
(TeO). TeO from each hemisphere is connected by tectal commissure (CT). Information 
from TeO is sent to the thalamus bilaterally via the supraoptic decussation (DSO). From 
Rt, visual information is sent ipsilaterally to the primary telencephalic target, E. From E, 
information is sent to several higher visual structures such as the lateral portion of the 
intermediate nidopallium (NIL).  
 

Functions of early visual processing. 

Investigations of the response properties of individual neurons 

(electrophysiology) and lesion studies have shown that neurons in the tectofugal pathway 

are sensitive and/or selective to different aspects of visual stimuli, such as motion, 

direction, luminance, and color (Engelage & Bischof, 1993). Many TeO neurons respond 

preferentially to certain aspects of moving stimuli. For example, some TeO neurons show 

responses to objects moving out of phase with the background and tend to be inhibited 

when the stimulus object is moving with the background, suggesting that these cells play 
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a role in figure-ground segregation or the discrimination of motion of an object as 

opposed to self-induced optical motion (Frost & Nakayama, 1983). In general, neurons in 

Rt have similar response characteristics to TeO cells. However, Rt is not a homogenous 

structure, but is composed of multiple subdivisions along the rostral-caudal axis. The 

anterior Rt has neurons that are sensitive to changes in luminance and color (Granda & 

Yazulla, 1971; Maxwell & Granda, 1979; Wang, Jiang, & Frost, 1993). Neurons in the 

central and posterior Rt are sensitive to features of motion such as, changes in stimulus 

size, direction, and velocity (Revzin, 1979). Some neurons in the posterior Rt are 

sensitive to approaching stimuli, suggesting that they act as collision detectors (Wang & 

Frost, 1992).  

Destruction, by way of lesions, to structures within the tectofugal pathway results 

in critical deficits in intensity, color, pattern, acuity, and movement discrimination 

(Hodos, 1993). Severe and often irreversible deficits in a variety of visual discrimination 

tasks, such as stimulus intensity, pattern, and location discriminations result when TeO is 

damaged (Jarvis, 1974). Similar deficits can be seen when lesions are made in Rt.  

Rotundal lesions cause significant deficits in discrimination of intensity difference 

thresholds (Hodos & Bonbright, 1974), visual acuity thresholds (Macko & Hodos, 1984), 

and size threshold differences (Kertzman & Hodos, 1988). In contrast to the tectofugal 

pathway, the functional significance of the thalamofugal pathway remains elusive. 

However, there is some evidence that this pathway is important for processing the 

binocular portion of the visual field, especially for frontal-eyed birds such as most raptors 

when they are in the process of capturing prey (Davies & Green, 1990). In studies of 

lateral-eyed birds, such as pigeons, lesions to the thalamofugal pathway cause little to no 
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discrimination deficits (Watanabe, 1992; Güntürkün, Miceli, & Watanabe, 1993). 

Specifically, virtually no deficits have been found in visual acuity or brightness intensity 

thresholds after lesions of the thalamic structure, nucleus opticus principalis thalami 

(OPT complex) (Macko & Hodos, 1984) or the telencephalic target, Wulst (Pasternak & 

Hodos, 1977; Hodos, Macko, & Bessette, 1984).  

These findings suggest that the tecotofugal pathway plays a crucial role in 

processing visual information that is essential to higher cognition compared to the 

thalamofugal pathway. Despite extensive studies in the lower visual structures of the 

tectofugal pathway (TeO and Rt), the structure and function of higher visual structures 

are not as well understood as the early visual stations. The first specific aim will be to 

examine the subgroups of the primary visual telencephalic structure, E. 

 

Background for Specific Aim One 

Functional significance of E. 

The primary telencephalic visual structure in the tectofugal pathway is E. Studies 

have shown that lesions to E cause similar deficits in visual discrimination tasks as seen 

after lesions to Rt. Bilateral lesions of E cause significant deficits in discrimination of 

intensity difference thresholds (Hodos, Weiss, & Bessette, 1988), visual acuity thresholds 

(Hodos, Macko, & Bessette, 1984), size threshold differences (Hodos, Weiss, & Bessette, 

1986), as well as intensity, color, and pattern discrimination (Bessette & Hodos, 1989). 

Hodos et al. (1988) demonstrated that lesions to E caused a severe decline (50% to 83% 

of the preoperative performance) in pigeons’ ability to discriminate differences in 
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luminous intensity. These results indicate that E, similar to lower stations of the 

tectofugal pathway, processes multiple aspects of the visual stimulus in parallel.  

However, it may also be involved with processing higher, more complex aspects 

of visual stimuli, such as object class or membership (Watanabe, 1992, 1996). Watanabe 

(1992) trained pigeons to discriminate between two bird species (pigeon vs. quail) and 

individual birds within a species (pigeon vs. pigeon). After successful training, bilateral 

lesions were applied to E and the birds were tested again on both tasks. The results 

showed that when E has been destroyed, birds can still perform the species discrimination 

task, but not the individual discrimination task. This finding suggests that object 

classifications such as species membership is at least in part controlled by E. 

 

Heterogeneity of E. 

For many years, E was considered to be an anatomically homogenous structure 

based on cytoarchitecture and neurochemistry. Specifically, early anatomical studies 

showed that E was composed of a “core” region (E) and an outer “belt” or “shell” region 

(Ep) based on connections (Ritchie & Cohen, 1977; Watanabe, Ito & Ikushima, 1985). 

Furthermore, projections from Rt extend directly to E, not Ep (Karten & Hodos, 1970). 

There is now evidence from electrophysiological, hodological, and lesion studies 

indicating that E is composed of multiple subgroups in a similar fashion to Rt.  

 

Anterior-posterior organization of E. 

As described above, Rt is organized in a parallel fashion in terms of 

cytoarchitecture, response characteristics, and connections. That is, processing of distinct 
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visual features takes place in the anterior, central, and posterior portions of Rt. This 

parallel organization appears to be extended to E because the projection from Rt to E is 

topographically organized along the anterior – posterior axis (i.e., the anterior, central, 

and posterior E receives inputs from anterior, central, and posterior Rt, respectively) 

(Benowitz & Karten, 1976; Nixdorf & Bischof, 1982; Laverghetta & Shimizu, 2003). 

This projection pattern has not been easily recognized in the past, partly due to the fact 

that brain sections used in many previous studies were made based on standard bird brain 

atlases that are significantly rotated in the anterior direction (Laverghetta & Shimizu, 

2003) (see Figure 2).  

 
 

Figure 2. Schematic view of pigeon brain (sagittal view). Schematic shows rotundal (Rt) 
projections to the core region of E. The projections from the anterior portion of Rt (Da) 
project to the anterior portion of E, whereas neurons in the central portion of Rt (Ce) and 
the posterior region of Rt (Post) project to the central and posterior regions of E, 
respectively. The top horizontal line represents the horizontal plane. The vertical line in 
the middle of the figure (*) represents the transverse plane typically used for cutting the 
pigeon brain. Note that the presumptive axis of E subdivisions is not parallel to the 
horizontal plane. Instead, E subdivisions appear to be arranged along an axis rotated in 
the anterior direction. This figure was taken from Laverghetta and Shimizu (2003). 
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Early electrophysiological studies have shown that many neurons in E respond to 

motion stimuli. In particular, many of the cells within E fire preferentially when an object 

in the receptive field moves in an upward/downward or fore/aft fashion (Revzin, 1970; 

Kimberly, Holden, & Bamborough, 1971). A more recent study showed that a group of 

cells in the caudal portion of E respond to looming stimuli similar to the cells that have 

been identified in Rt (Xiao, Li, & Wang, 2006). This finding suggests that looming 

sensitive cells in Rt send their information directly to the looming sensitive cells in E, 

which lends further support to the notion that information from Rt is transferred in an 

orderly and parallel manner to E. 

The majority of previous lesion studies destroyed the entire E and there were no 

clear data showing functional segregation among possible subdivisions. However, a study 

conducted by Nguyen et al., (2004) showed that cells in E can be functionally grouped 

along the rostral-caudal axis. In their study, pigeons that received lesions to the anterior 

portion of E performed poorly on spatial pattern discrimination tasks, but showed no 

deficits on motion discrimination tasks. In contrast, pigeons which received lesions 

restricted to the caudal portion of E showed deficits in visual motion discrimination, but 

showed little or no deficits on the spatial pattern discrimination. The double dissociation 

found in this study suggests that visual information in the avian brain may be processed 

in at least two major parallel streams, similar to that which has been demonstrated in 

primates (DeYoe & Van Essen, 1988; Goodale & Milner, 1992).  
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Internal-external organization of E. 

Various anatomical staining techniques have been used to visualize the physical 

characteristics of E, including its size, shape, and subgroups (Hellmann, Waldmann, & 

Güntürkün, 1995; Krützfeldt & Wild, 2004; Krützfeldt & Wild, 2005). Hellmann et al. 

(1995) used cytochrome oxidase (CO), a metabolic activity marker which can be used to 

identify highly active groups of neurons, to examine the neural activity within E. The 

results showed that in terms of cellular activity, E is not homogenous. High levels of CO 

activity were found, the medial, central and ventrolateral areas, while CO activity in the 

centroventral and dorsolateral areas were weak. These CO parcellations in the intact E 

strongly suggest that multiple cellular subdivisions exist here and perhaps these cells 

perform different visual functions. 

Krützfeldt and Wild (2005) used tract tracing methods to visualize Rt efferents 

and, histochemical methods to examine the calcium-binding protein (CaBP) parvalbumin 

(PV) and CO activity. There were three main findings in this study which have important 

implications regarding the accurate definition of the core and shell region of E. 

Specifically, the results showed that 1) E can be accurately defined by the overlap of the 

pattern of CO activity and the rotundal efferents, 2) Ep receives few rotundal efferents, 

but sends most of its efferents to other areas of the ipsilateral hemisphere, including NIL, 

and 3) based on the pattern of PV-immunoreactivity, the core region of E can be divided 

into two separate regions, an internal division (Ei) and an external division (Ex) (see 

Figure 3A).  



www.manaraa.com

 14 

 
 

Figure 3. Microphotographs showing PV and CO activity in E. A. Microphotograph 
showing two divisions of E, an internal division (Ei) where a great number of PV-ir cells 
are located and an external division (Ex) which consists of fewer PV-ir cells. This 
photograph was taken from Krützfeldt and Wild (2005). B. Microphotograph showing 
CO expression in similar location of E. Regions of weak staining can be seen in the 
centroventral and dorsolateral areas (arrows). Both microphotographs are of transverse 
sections through the right hemisphere E. 

 

However, the definition of E based on PV immunoreactivity is not congruent with 

the shape and size of this structure as defined by CO immunoreactivity (see Figure 3B). 

Due to the importance of E for visual processing, it is necessary to clarify the anatomical 

boundaries of this structure. To date, there has been no comprehensive investigation to 

“map” the organization of E, combining these data described above.   

 

Background for Specific Aim Two 

Definition of NIL. 

In addition to E, several studies have analyzed the relationship between the 

development of other forebrain regions and various cognitive abilities (Timmermans, 

Lefebvre, Boire, & Basu, 2000; Jarvis et al., 2005). There are specific areas within the 

forebrain called the mesopallium and nidopallium, the size of which varies among 

different types of birds. Sophisticated behaviors which require cognitive flexibility or 
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“innovativeness” such as, using novel food foraging strategies or tool use seem to be 

dependent on these brain regions. Birds that possess a large mesopallium and nidopallium 

tend to exhibit “innovative” behaviors compared to birds with relatively small forebrains 

(Timmermans et al., 2000). The NIL is one specific region within the nidopallium. 

However, there is currently very little information regarding the anatomical and 

functional characteristics of NIL. In the next section, I discuss what is currently known 

about the higher visual system of birds. 

The NIL is the main target of projections from E. When Husband and Shimizu 

(1999) injected anterograde tract tracers into E, the majority of the efferents projecting 

from E terminated in Ep and Ep2 (an additional cell layer located immediately dorsal to 

Ep). Most projections from Ep terminated in Ep2, which in turn, sent projections to 

diverse regions of the telencephalon, including the fronto-lateral portion of the 

nidopallium (NFL), area temporo-parieto-occipitalis (TPO), and NIL.  

 

Figure 4. Schematic showing the spatial relationship between E and NIL. This figure was 
taken from Husband & Shimizu (1999).  

 

NIL is thought to be located intermediately in the anterior-posterior axis and 

adjacent laterally to TPO and dorsally to the mesopallium. NIL is only a part of the 
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nidopallium, which includes several hodologically and functionally distinct subdivisions. 

However, the cytoarchitecture of the nidoplallium is rather homogeneous in general and 

it is difficult to differentiate among these subdivisions based solely on cell types. In 

particular, the size and extent of NIL with the anterior, posterior, medial, and ventral 

neighboring nidopallium are ambiguous and have not been examined systematically.  

 

NIL connections are reminiscent of NCM. 

Currently, there has been no report of a physiological investigation of NIL. One 

possible hint to the function of this structure comes from its connectional similarities to 

auditory telencephalic structures, specifically, the caudomedial neostriatum (NCM). Note 

that NIL receives efferents from the primary visual area E (Husband & Shimizu, 1999). 

In a similar fashion, the NCM receives input from a primary (L2) and secondary (L3) 

auditory areas (Vates, Broome, Mello, & Nottebohm, 1996). In the songbird, NCM is 

involved in the processing of new songs and the formation of song-related memories. 

Studies have also shown that, in this brain region, certain immediate early genes (IEGs) 

are induced in response to complex auditory stimuli (Mello, Vicario, & Clayton, 1992; 

Mello & Clayton, 1995; Nastiuk, Mello, George, & Clayton, 1994). It has been suggested 

by some researchers (Husband & Shimizu, 1999) that NIL serves a similar function in the 

visual system. That is, perhaps NIL is involved with the formation of visual memories.  

In the above referenced songbird studies, the expression of an IEG known as zenk 

was examined. Zenk induction and the expression of its protein product, ZENK, have 

been associated with the formation of long-term memories and it has been used as a 

neuroanatomical marker for cellular activation in direct response to specific stimuli. 
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Furthermore, zenk expression has been used for mapping brain regions associated with 

the perception of species-specific song stimuli in the songbird (Mello et al., 1992). In that 

study, adult canaries and zebra finches were presented with audio playbacks of their 

conspecific or heterospecific song and then the distribution pattern of zenk was analyzed. 

The results showed that zenk expression in the song learning regions of the brain was 

much higher when the subject bird listened to a playback of a conspecific song than for a 

heterospecific song, suggesting that neurons in these regions were selectively responding 

to biologically and socially relevant stimuli. In the current study, ZENK expression was 

examined in NIL after presentation of species-specific visual stimuli. 

 

Background for Specific Aim Three 

Neuromarkers used to identify visual structures. 

Several neuromarkers (some of which have been discussed already) have been 

used to delineate visual structures that are cytoarchitectonically difficult to define. 

Among them, three different classes of neuronal markers have proven to be particularly 

useful: 1) the CaBP, PV, 2) CO, and 3) the IEG, zenk. These neuromarkers reflect 

directly and indirectly the cellular changes associated with neural activity, and they have 

been used extensively for studies of the avian neural system.  

 

Parvalbumin (PV). 

One class of neuromarkers are calcium-binding proteins (CaBPs), which are a 

large class of proteins that have been studied extensively for their roles in neuronal 

regulatory processes (Baimbridge, Miller, & Parkes, 1982) as well as their potential role 



www.manaraa.com

 18 

in neuronal plasticity and development (Celio & Heizmann, 1981; Celio, 1990). In avian 

literature, a specific family of CaBPs, known as the EF-Hand family, includes 

parvalbumin (PV), calbindin D-28k (CB), and calretinin (CR). These CaBPs have been a 

major focus of studies because they are abundant in the avian forebrain (Braun, Scheich, 

Schachner, & Heizmann, 1985a; Braun, Scheich, Schachner, & Heizmann, 1985b; Braun, 

Scheich, Braun, Rogers & Heizmann, 1991). Although the precise function of many of 

these CaBPs remains elusive, PV is of particular interest in that it may play a role in 

neuronal plasticity because of its association with developing neurons. A transient 

presence of PV-ir has been observed in some of the structures associated with auditory 

filial imprinting in birds, suggesting that this protein is in some way involved in neural 

plasticity necessary for long-term imprinting behavior (Braun et al., 1991). Similarly, 

PV-containing neurons are found in the higher visual structures in birds (Krützfeldt & 

Wild, 2004, 2005; Husband & Shimizu, 1999). Often, a reduction of PV expression is 

observed in a particular brain region after destruction of its afferents, suggesting that the 

expression of PV is dependant on this afferent information (Tigges & Tigges, 1991, 

1993). Such effects have been observed in the avian telencephalon after lesions in Rt 

(unpublished observation). 

  

Cytochrome oxidase (CO).  

Neural activity can also be determined by examining the expression of the 

enzyme, CO. Like all eukaryote cells, neurons rely on cellular respiration to convert 

oxygen into energy. Cells that make up vital organs, such as the brain depend heavily on 

the process of oxidative energy to survive. Specifically, a biochemical reaction called the 
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electron transport chain takes place within the mitochondria of the cell. This biochemical 

process of respiration produces the energy source adenosine triphosphate (ATP), which is 

used for several cellular processes including the sodium-potassium pump, fast axonal 

transport, and the synthesis of some neurotransmitters (Wong-Riley, 1989). The enzyme 

CO is a byproduct of the respiration process. Therefore, when activity is required of the 

neuron, more ATP is produced, which in turn, causes more CO to accumulate inside of 

the cell. Neurons containing high concentrations of CO relative to other neurons are 

considered to be more active. Histochemical procedures have been used to visualize the 

expression of CO, particularly as a reliable marker for long-term cellular activity (Wong-

Riley, 1989).  

Several studies have shown that the expression pattern of CO can be used to 

identify subregions of avian brain structures, which may be difficult to differentiate 

cytoarchitectonically (Hellmann, Waldmann, & Güntürkün, 1995; Krützfeldt & Wild, 

2004; Krützfeldt & Wild, 2005). As mentioned earlier, CO expression revealed 

anatomical subdivisions of E (Hellmann et al., 1995; Krützfeldt & Wild, 2005). These 

studies show that CO is a neuromarker that can be very useful in physiological studies 

aimed at clarifying poorly understood brain structures 

 

ZENK. 

The IEGs, such as zenk, c-jun, and c-fos, are among the first class of genes to be 

regulated following neuronal activation (Goelet, Castelucci, Schacher, & Kandel, 1986; 

Morgan & Curran, 1989; Sheng & Greenberg, 1990; Tischmeyer & Grimm, 1999; 

Clayton, 2000). Many proteins encoded by IEGs are important because they act as 



www.manaraa.com

 20 

transcriptional regulators that activate late response genes thought to be involved in long-

term cellular changes associated with learning and memory (Chaudhuri, 1997; 

Tischmeyer & Grimm, 1999). ZENK (an acronym for zif-268, egr-1, NGFI-A, and Krox 

24) is the protein product of the IEG, zenk. Activation patterns of this particular IEG have 

been studied extensively in the avian brain, including the analysis of the song control 

system in songbirds (Mello et al., 1992; Jarvis, Mello, & Nottebohm, 1995; Mello & 

Ribeiro, 1998), sexual behavior in quail and starlings (Ball & Balthazart, 2001; Can, 

Domjan, & Delville, 2007), sexual imprinting in finches (Lieshoff, Grosse-Ophoff, & 

Bischof, 2004; Huchzermeyer, Husemann, Lieshoff, & Bischof, 2006), and homing 

behavior in pigeons (Shimizu et al., 2004). Moreover, IEGs, such as zenk can be induced 

by a variety of different stimuli. In addition, they can be used as endogenous markers of 

neuronal activity and, consequently, to map functional activity within the vertebrate brain 

(Chaudhuri, 1997; Herdegen and Leah, 1998; Tischmeyer and Grimm, 1999). 

Immunohistochemistry for ZENK was used in this study to identify differential brain 

activity in response to a biologically and socially relevant visual stimulus. 

Although these neurochemicals are useful markers to define higher visual 

structures, E and NIL, it is also important to understand whether or not the normal 

expression of the neurochemicals is dependent on a truly visual signal per se. It was 

hypothesized that if the expression of these markers is indeed associated with the 

neuronal activity of the regions, they will be extremely valuable to understand the 

functional significance of these structures. However, it is also possible that these 

chemical markers are not correlated to neural activity in the regions. No systematic 

studies on this issue had previously been carried out. A major obstacle to conduct such 
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studies is that they would require tissue samples of different brains, each of which would 

be placed in a different condition. While processing tissues from different brains, there 

are subtle, but inevitable, differences in parameters of histological procedures (e.g., tissue 

thickness, incubation duration, and temperature), which make it difficult to determine 

whether the differences are truly due to the experimental condition.  

The avian brain provides the researcher with an excellent opportunity to avoid this 

problem and to compare the control and the experimental condition in a single brain. In 

birds, retinal fibers from one eye project almost completely to the contralateral 

hemisphere (Shimizu & Karten, 1991, 1993). In addition, unlike placental mammals, 

birds do not have a massive interhemispheric commissure, the corpus callosum. With 

exception of a few small commissures and decussations, information from one visual 

field is processed in the opposite hemisphere. Because of this neural design, it is rather 

easy to block the visual input from one eye reaching E and NIL.  

Despite previous research, the exact function of the interhemispheric connections 

is not clear. Nevertheless, they are discussed briefly here. The left and right TeO are 

connected by two commissures, the tectal commissure (CT) and the posterior 

commissures (CP), which are located adjacently (Ehrlich & Saleh, 1982). Although the 

exact function of CT is not clear, results from electrophysiology studies indicate that this 

commissure plays an inhibitory role. The other commissure is the supraoptic decussation 

(DSO). The deeper layers of TeO send bilateral projections to the thalamic structure, Rt. 

The contralateral projection ascends to Rt through the DSO. 
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Rationale 

 As described above, the anatomy of higher visual structures had not been 

investigated sufficiently until now although they must play essential roles in visual and 

cognitive abilities. There is only scarce information about the organization and 

subdivisions of E (Specific Aim 1), the anatomical border and organization of NIL 

(Specific Aim 2), and the significance of visual signal to E and NIL (Specific Aim 3). 

The present study capitalized on the unique organization of visual projections of birds, in 

which there is no corpus callosum and virtually complete decussation of retinal fibers at 

the optic chiasm. This preparation created a unique opportunity to examine each 

hemisphere separately by administering a different treatment in each visual route to the 

left and right hemispheres. These treatments included lesions in Rt and occlusion of eyes, 

which interrupted the visual signal to higher visual areas (E and NIL) at the level of the 

thalamus and retina, respectively. By carrying out these treatments unilaterally, E and 

NIL in only one hemisphere were affected by the procedures, whereas the other 

hemisphere was used as control. This enabled me to evaluate the effect of the procedures 

in one hemisphere compared to the other hemisphere within the same brain. 

 For Specific Aim 1, detailed analyses of differential patterns of CO and PV were 

used to clarify the physical characteristics (shape and extent) of the subregions in E. The 

information provided here served as the first step towards mapping this very important 

region for visual processing. A detailed atlas of anatomical subdivisions within E can be 

used for highly specific lesions which, in turn, will allow investigators to more clearly 

define the functional divisions within this structure.  
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 For Specific Aim 2, the expression pattern of ZENK immunoreactivity was 

examined in the nidopallium in order to provide a clear anatomical definition of NIL 

based on neural activity. The information will be important for future studies of this 

elusive, but functionally important structure, such as physiological recording of NIL 

neurons and the understanding of the role of NIL in visual and cognitive functions.  

 For Specific Aim 3, the expression of CO, PV, and ZENK was compared between 

the two hemispheres after occlusion or lesion was made unilaterally. The results clarified 

the significance of neural signal for chemical expression in higher visual areas. The 

information was essential to confirm whether or not these neural markers are dependent 

on visual signal per se. It was hypothesized that if the visual signal had significant effects, 

E and NIL could be distinguished from the surrounding regions. 
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Method 

Subjects 

In total, twelve adult white Carneaux pigeons (Columba livia) obtained from 

Palmetto Pigeon Plant, South Carolina were used in this study. The sex of each bird was 

determined behaviorally before experimentation by observing their behavioral responses 

to a live conspecific, and was verified post-mortem by visual inspection of the 

reproductive organs. All birds were housed individually in cages, separated by opaque 

partitions to restrict visual and physical interaction with other birds throughout the entire 

duration of the study. The vivarium was maintained on a constant 12h light: 12 h dark 

cycle. The birds had free access to water and a balanced diet of mixed grains and were 

weighed weekly to ensure their health and maintenance of a stable weight. All procedures 

outlined in this study were conducted in accordance with the NIH guidelines and 

approved by the University of South Florida Institutional Animal Care and Use 

Committee.  

 

Unilateral Lesions 

The subjects were divided into two groups: Lesion and Occlusion groups (n = 6 

each). Pigeons in the Lesion group received a unilateral electrolytic lesion to destroy the 

thalamic structure, Rt. For the lesion surgery, pigeons were deeply anesthetized with 

ketamine (40mg/kg of body weight, i.m. Aveco Co., Inc., Fort Dodge, IA) and xylazine 

(10 mg/kg of body weight, i.m. Lloyd Laboratories., Shenandoah, IA), and were then 
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placed in a stereotaxic apparatus (David Kopf Instruments, Tujunga, CA). All lesions 

were administered through an insulated electrode attached to a D.C. Constant Current 

Lesion Maker (Grass model # D.C. LM5A, Quincy, MA) at a current of 1mA for 20 

seconds. The location of lesion target was specified according to coordinates in the 

stereotaxic atlas of the pigeon brain (A: 6.10, L: 3.00, and V: 5.50; Karten & Hodos, 

1967). Lesion electrodes were made by coating insect pins with epoxy (EPOXYLITE 

Corp., Irvine, CA) and then exposing the tip (0.5 mm). The side of lesion (left or right) 

was counterbalanced among subjects. After surgery, the pigeon was returned to its cage 

for recovery and monitored daily for seven days. 

 

Monocular Occlusions 

One eye of each subject in the Occlusion group was blocked by applying a small 

opaque cap made of polyvinyl chloride (1.5 cm internal diameter, 2 mm thickness) 

around the outside of one pigeon eye using a non-toxic surgical tissue adhesive (3M 

Vetbond). The open end was covered with opaque tape (black electrical tape) to keep 

light from entering. After the eye-cap was applied, the subject was returned to its cage 

and monitored daily for seven days to make sure this occlusion procedure did not cause 

any undue stress and that the eye-cap remained in place.  

 

Exposure to Live Stimulus 

Following a seven-day period of post-lesion recovery for the Lesion group or eye-

cap application for the Occlusion group, all subjects were sacrificed immediately after 

they were exposed to a live conspecific stimulus. The purpose of the exposure to 
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conspecifics was to maximize the ZENK expression in the telencephalon (Mello & 

Ribeiro, 1998; Patton, Husband, & Shimizu, 2009). The subject was first placed in a 

testing apparatus (90 X 90 X 90 cm) in complete darkness for approximately 12 hours 

(overnight). After the period of darkness, an overhead light was turned on and a live 

pigeon (male) was be placed in front of the subject for 1.5 hours. Although the subject 

and the live conspecific stimulus did not have physical contact, the separation by a clear 

Plexiglas window permitted visual, auditory, and olfactory interaction. A wire-mesh 

cover on the top of the chamber was used to prevent flight and escape, but in no other 

way inhibited the birds’ behavior. The subject was sacrificed following the end of the 

stimulus exposure session. The timeframe of 1.5 hours of live stimulus exposure was to 

allow for peak expression of ZENK (Mello & Ribeiro, 1998). 

 

Perfusions 

Pigeons were deeply anesthetized via ketamine (at least 40mg/kg of body weight, 

i.m.) and xylazine (at least 10 mg/kg of body weight, i.m.) and then perfused 

transcardially with a 0.9% saline solution followed by 4% ice-cold paraformaldehyde in 

phosphate buffer (0.1 M PB, pH 7.4). Brains were post fixed for 12 hours at 4° C, 

followed by immersion in a 30% sucrose solution for 24 hours at 4° C. Brains were then 

frozen in dry ice and cut in 40µm transverse sections on a sliding microtome. Sections 

were washed three times at 10 min. each in PB in preparation for further histological 

processing. 
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Parvalbumin and ZENK Immunohistochemistry 

For visualization of parvalbumin (PV) and ZENK, the appropriate antibodies 

against them were used in the primary incubation. For PV, the primary antibody was a 

monoclonal mouse anti-PV (dilution 1:10000; Sigma, St. Louis, MO). For ZENK, the 

antibody was a polyclonal rabbit anti-Egr-1 (dilution 1:10000; Santa Cruz Biotechnology, 

Santa Cruz, CA). The tissue sections were incubated in the respective antibody solution 

along with PB with 0.3% Triton X-100 at 4˚C for 12 hours. The tissues were then washed 

in PB (3 x 10 min.) followed by 1 hour of incubation in biotinylated secondary antibodies 

(anti-mouse for PV, and anti-rabbit for ZENK, both 1:200, Vector Laboratories, 

Burlingame, CA) and 0.3% Triton X-100 in PB for 1 hour at room temperature. The 

tissues were washed again in PB (3 x 10 m). Antibody binding was visualized with an 

avidin-biotin reagent (1:200 dilution of the Vectastain ABC Elite kit, Vector Laboratories) 

followed by incubation in a 0.025% solution of 3,3´-diaminobenzidine (DAB, 

Polysciences, Warrington, PA) and hydrogen peroxide. Once stained, tissue sections were 

mounted onto glass slides and coverslipped.  

 

Cytochrome Oxidase Histology 

Tissues were incubated in a centrifuge tube containing 4.5 mL 0.1M PB, 0.0025g 

DAB, 0.0025 g cytochrome C (equine heart, Sigma C7752), and 0.2 g sucrose at 37̊C, in 

the dark, for 2 hours. Following staining, tissues were washed in PB (3 x 10 min.) at 

room temperature, mounted onto glass slides, and coverslipped.  
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Additional Histology 

Adjacent tissue sections from each brain were also stained with cresyl violet to 

show major cell groups and fiber tracts for precisely locating anatomical boundaries of 

the relevant structures. 

 

Parvalbumin and Cytochrome Oxidase Image Capturing and Analysis  

All tissues stained for PV and CO were examined and photographed using a 

macroscope (Wild Makroskop) or a microscope (Nikon Microphot FX). The digital 

images were acquired using a NIKON CCD camera (DXM 1200) or SPOT Insight QE 

camera (Diagnostic Instruments, Sterling Heights, MI) which can be mounted on each of 

these scopes. The images were then loaded to Adobe Photoshop software as black and 

white positive images (Adobe Systems Inc., Mountain View, CA) using a Dell Optiplex 

PC. Brightness and contrast were adjusted for the final images. No additional filtering or 

manipulation of the images was performed.   

The distribution of PV-ir cell bodies, PV-ir neuropil, and CO staining in E was 

mapped by using quantitative analysis at specific tissue sections through the anterior-

posterior extent of E were selected. Specifically, E was examined at atlas sections 

A10.50, A10.00, A9.50, and A9.00 according to the pigeon stereotaxic brain atlas by 

Karten and Hodos (1967). Within each tissue section of E, two square target regions each 

250 X 250 µm (0.0625 mm2) were designated to measure the number of PV-ir cell bodies 

in the inner region and the outer region of E. Figure 5 shows the location of the inner and 

outer target regions.  
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Figure 5. Schematics showing the inner (triangles) and outer (circles) target regions of E 
where the number of PV-ir cells were counted. The anterior coordinates of the sections 
shown in the figure from the left are: A10.50, 10.00, 9.50, and 9.00. 
 

The density analysis of PV-ir neuropil and CO staining was conducted as follows. 

Microphotographic images taken at constant illumination were converted to grayscale 

using Photoshop (CS3), and then the optical density values were acquired for each target 

region via NIH ImageJ (v. 1.41). All analyses were conducted blind to the treatment 

condition and hemisphere. The total density values from each subject were then used to 

calculate summary statistics and perform subsequent statistical tests. Similar to the 

procedure used to count PV-ir cell bodies, target regions were designated within each 

tissue section of E. However, instead of two regions, six square target regions each 250 X 

250 µm (0.0625 mm2) were designated to measure the density of PV-ir neuropil and CO 

staining in E. Figure 6 shows the location of the six regions. Processed sections from all 

brains were under constant illumination and digitally recorded using a CCD camera 

(Nikon DXM1200) mounted on a macroscope (Wild M420). Using ImageJ (v. 1.41, 

Abramoff, Magelhaes, & Ram, 2004), the six target regions of E were delineated and 

calibrated according to a Kodak step tablet (Rasband, 1997-2009). The relative density 

measurements were compared to examine the regional differences within E. The protocol 

for this density analysis can be found in Appendix A.  
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Figure 6. Schematics showing the six target regions within E where the density of PV-ir 
neuropil and CO staining was measured in lower magnification (top) and higher 
magnification (bottom). The anterior coordinates of the sections shown in the figure from 
the left are: A10.50, 10.00, 9.50, and 9.00. 
 

The PV-ir cell bodies were counted as follows. A signal was counted as a cell if 

staining within the neurons revealed a complete soma perimeter, and it was clearly 

differentiated from background. Any potential bias was eliminated by the blind counting 

procedure. Each neuron was marked with a paint spot using CANVAS (v.11.0, Deneba 

Systems) graphic software and the spots were counted with ImageJ software. The total 

cell counts from each subject were then used to calculate summary statistics and perform 

subsequent statistical tests. 

 

ZENK Image Capturing and Analysis 

For all tissues stained for ZENK, low-power microphotographs were taken of the 

entire forebrain in the left and right hemisphere simultaneously using a motorized Nikon 

TE 2000U inverted microscope to capture ZENK-ir patterns across both hemispheres 

simultaneously. Based on the images, the presumptive borders of NIL were identified 
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visually by comparing the quantity of ZENK-ir cells in the left and right hemispheres. 

This procedure was based on the assumptions that 1) NIL is relatively homogeneous in 

terms of ZENK expression and that 2) the level of ZENK expression in NIL was 

significantly reduced by lesions in the ipsilateral Rt and by occlusions of the contralateral 

eyes. Because the exact size and shape of NIL was not known in advance, it was 

necessary to be conservative in assuming which group of ZENK-ir cells belonged to NIL. 

To do this, NIL was tentatively defined to be located dorsolateral to the caudal end of E, 

and ventromedial to the tractus arcopallium dorsalis (DA). Figure 7 is an illustration, 

which shows the location of the putative NIL. 

For quantitative analysis, the central portion of NIL was suggested to be at A7.00 

and A6.00 (Husband & Shimizu, 1999), in each of which a square target region of 750 X 

750 µm (0.5625 mm2) was used to count the number of ZENK-ir cells. Figure 7 shows 

schematic drawings illustrating the areas for quantitative analysis of the ZENK 

expression. 

 

Figure 7. Schematic showing two transverse sections of the avian brain where NIL is 
thought to be located. The dotted line shows the region thought to be NIL and the square 
target region shows where ZENK-ir cells were counted. The elongated hatched region 
dorsolateral to the putative NIL is the tractus arcopallium dorsalis (DA). The locations 
(anterior-posterior coordinates) shown in the figure from the left are: A7.00 and 6.00. 
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The number of ZENK-ir neurons was counted using the following method. When 

ZENK proteins are stained, the chromatin remains in the nucleus of the neuron and not in 

the dendrites or axons. Therefore, ZENK protein expression is morphologically highly 

similar from cell to cell; ZENK-ir cells can be differentiated from artifact staining and 

counted quickly. Using existing optical analysis functions in ImageJ, Mahmud (2008) 

developed a new image analysis technique. This new method of analysis called, A New 

Digital Imaging Protocol for Signal Detection and Distribution Analysis in Histological 

Samples, uses a Find Maxima function to identify and label ZENK-ir cells as localized 

spikes of chromatic value on an image. Thus, the function works by recognizing any 

pixel with a high chromatic value relative to its neighboring pixels. Specifically, the Find 

Maxima function was used to detect signals based on spikes of chromatic values present 

in the tissue sample. The concept is logical, since signals are traditionally localized dark 

spots against a lighter background, which is the exact definition of Maxima according to 

ImageJ. In addition, since the function only looks at local color values, it is not subject to 

overall optical inconsistencies such as uneven staining, lighting or weak signal strength. 

For instance, staining patterns often clump up near the edges of samples masking signals 

in a generally dark color that visual and even threshold-based analysis can not analyze. 

The threshold function actually views the entire region as one dark signal due to its 

relative darkness in comparison with the rest of the slide instead of a region of multiple 

signals. 

Once the Find Maxima function was executed, the image was reproduced with 

only the maxima highlighted. Then, a function known as Dilation was used on this 

reproduced image, which simulated a form of signal extraction. The concept is based on 
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the fact that once the maxima are dilated, the signals have a finite black area. Therefore, 

the more signals that are present in any given space, the more area is colored black in 

those squares. Once the squares are averaged, darker squares can be correlated with 

higher signal count. The protocol is included in Appendix B. 

 

Lesion Reconstructions 

Rotundal lesion reconstruction was carried out on a series of standard plates 

derived from the atlas of the pigeon brain of Karten and Hodos (1967). Gliosis and 

necrosis in the diencephalon was recorded. The extent of each lesion was determined 

from measurements of reconstructions made with camera and graphics software 

(CANVAS. v.11.0). 

 

Statistical Analyses 

For Specific Aim One, cell count data were statistically analyzed using 4-way 

(treatment x hemisphere x region of E x location) mixed analysis of variance (ANOVA), 

where the hemisphere (control versus experimental), region of E (inner versus outer), and 

location (anterior-posterior coordinates) were repeated (within subject) measures and 

treatment (lesion versus occlusion) was an independent variable (see Figure 5). Similar 

tests were conducted for analysis of PV-ir neuropil and CO staining intensity where the 

hemisphere (control versus experimental), region within E (six different target regions of 

E), and location (anterior-posterior coordinates) were repeated (within subject) measures 

and treatment (lesion versus occlusion) was an independent variable (see Figure 6)  
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For Specific Aim Two, the differences in the mean number of ZENK-ir cells in 

NIL were analyzed by conducting a 2 x 2 factorial mixed model ANOVA where 

hemisphere (control versus experimental) was a repeated (within subject) measure and 

treatment (lesion versus occlusion) was an independent variable. The statistical designs 

conducted for the first two specific aims also addressed the questions of Specific Aim 

Three. For each of these statistical analyses, Significant 3-way ANOVAs (alpha = 0.05) 

were followed up with Fishers LSD (protected t) tests. 
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Results 

In the present study, the brain tissues from the same animals were processed and 

analyzed for, not only one specific Aim, but sometimes for other Aims as well. In order 

to avoid presenting redundant data, the results section is organized by presenting the 

lesion reconstruction data (Specific Aims 1, 2, and 3), followed by data from PV-

immunohistocehmistry (Specific Aims 1 and 3), CO-histochemistry (Specific Aims 1 and 

3), and ZENK-immunohistochemistry (Specific Aims 2 and 3). 

 

Lesion Reconstructions 

Overall, six pigeons received a unilateral lesion to the thalamic nucleus, Rt 

(PG236, PG239, PG234, PG259, PG254, and PG47). In each of the lesion cases, Rt was 

either mostly or completely destroyed in one hemisphere. In some cases the lesion site 

was large enough to include neighboring structures, such as n. triangularis (T). Below is a 

brief description of each lesion case starting from the smallest lesions to the most 

extensive lesions. 
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Figure 8. Schematics showing the location of the nucleus rotundus (Rt). Only the left 
hemisphere of each anterior-posterior coordinate is shown here. 
 

Individual lesion reconstruction cases. 

Figure 9 illustrates the degree of lesion damage for subject PG236. Overall, the 

lesion was relatively small, extending just from anterior coordinate 7.00 through 6.50. 

The lesion was mainly localized in the anterior portion of Rt leaving intact a large portion 

of the posterior sections (Figure 9 D-H). 

 

Figure 9. Rt damage reconstruction for subject PG236. Ablated or damaged tissue in the 
Rt is indicated by solid black areas. 
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Figure 10 illustrates the degree of lesion damage for subject PG239. The damage 

overall was moderate, extending from A7.00 through A6.25. The lesions were seen in the 

rostral portion of Rt, but left all of the caudal sections intact (Figure 10 E-H). Damage to 

other structures was restricted to some moderate damage in the adjacent T (Figure 10 C-

D). 

 

Figure 10. Rt damage reconstruction for subject PG239.  

 

Figure 11 illustrates the degree of lesion damage for subject PG234. The damage 

overall was more substantial compared the previous two cases. The lesions included the 

entire rostral portion of Rt, leaving only a small portion of the caudal sections (Figure 11 

G-H). Damage to other structures was restricted to some moderate damage in the adjacent 

T (Figure 11 C-F). 
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Figure 11. Rt damage reconstruction for subject PG234.  

 

Figure 12 illustrates the degree of lesion damage for subject PG259. The damage 

overall was also substantial from A7.00 through A5.50. The lesions included the entire 

rostral portion of Rt, sparing the most caudal sections (Figure 12 G-H). Damage to other 

structures was restricted to some moderate damage in the adjacent T (Figure 12 C-F).  

 

Figure 12. Rt damage reconstruction for subject PG259. 
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Figure 13 illustrates the size of the lesion for subject PG254. The damage overall 

was substantial extending the entire anterior-posterior axis of Rt. Damage to other 

structures was restricted to some moderate damage in the adjacent T (Figure 13 C-F). 

 

 

Figure 13. Rt damage reconstruction for subject PG254. 

 

Figure 14 illustrates the degree of lesion damage for subject PG47. The damage 

overall was also substantial. It extended from anterior coordinate A7.00 through A5.25 

and was centered in Rt.  
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Figure 14. Rt damage reconstruction for subject PG47.  

 

PV Immunohistochemistry 

In total, the brain tissues of eight birds (four in the unilateral lesion condition and four in 

the monocular occlusion condition) were processed to detect PV-ir cell bodies and 

neuropil in E. Below are microphotographs showing E on the control and experimental 

hemispheres at each of the four different anterior-posterior locations for all of the birds.  
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Individual PV cases. 

PG234 (Unilateral Lesion) PV expression in E (Figure 15).  

 

Figure 15. Microphotographs of PG234 showing the distribution pattern of PV in E after 
unilateral lesion. For this case, the left Rt was destroyed. Scale bar = 500 µm. 
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PG259 (Unilateral Lesion) PV expression in E (Figure 16). 

 
 
Figure 16. Microphotographs of PG259 showing the distribution pattern of PV in E after 
unilateral lesion. For this case, the right Rt was destroyed. Scale bar = 500 µm. 
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PG254 (Unilateral Lesion) PV expression in E (Figure 17). 
 

 
 

Figure 17. Microphotographs of PG254 showing the distribution pattern of PV in E after 
unilateral lesion. For this case, the right Rt was destroyed. Scale bar = 500 µm. 
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PG47 (Unilateral Lesion) PV expression in E (Figure 18). 
 

 
 

Figure 18. Microphotographs of PG47 showing the distribution pattern of PV in E after 
unilateral lesion. For this case, the right Rt was destroyed. Scale bar = 500 µm. 
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PG253 (Monocular Occlusion) PV expression in E (Figure 19). 
 

 
 

Figure 19. Microphotographs of PG253 showing the distribution pattern of PV in E after 
monocular occlusion. For this case, the left eye was occluded. Scale bar = 500 µm. 
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PG263 (Monocular Occlusion) PV expression in E (Figure 20). 
 

 
 

Figure 20. Microphotographs of PG263 showing the distribution pattern of PV in E after 
monocular occlusion. For this case, the left eye was occluded. Scale bar = 500 µm. 
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PG256 (Monocular Occlusion) PV expression in E (Figure 21). 
 

 
 

Figure 21. Microphotographs of PG256 showing the distribution pattern of PV in E after 
monocular occlusion. For this case, the left eye was occluded. Scale bar = 500 µm. 
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PG260 (Monocular Occlusion) PV expression in E (Figure 22). 
 

 
 

Figure 22. Microphotographs of PG260 showing the distribution pattern of PV in E after 
monocular occlusion. For this case, the left eye was occluded. Scale bar = 500 µm. 
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Number of PV-ir neurons in E. 

Eight pigeons were used for Specific Aim One. Four birds received unilateral 

lesions to the thalamic nucleus, Rt (PG234, PG259, PG254, and PG47) and four birds 

received monocular occlusions (PG253, PG263, PG256, and PG260). A factorial mixed 

design ANOVA was conducted to determine whether or not there was a significant 

difference in the mean number of PV-ir cells in E based on: treatment (lesion versus 

occlusion), hemisphere (control versus experimental), region of E (inner versus outer), 

and location (anterior-posterior coordinates). 

In terms of simple main effects, the results showed that there was a significant 

difference in the mean number of PV-ir cells depending on the region of E (inner versus 

outer) F(1, 6) = 119.43, p < 0.001. Specifically, the mean number of PV-ir cells was 

significantly higher for the inner region of E (M = 38.00) compared to the outer region of 

E (M = 8.48; see Figure 23).  
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Figure 23. Graph showing the mean number of PV-ir cells counted in the inner and outer 
regions of E, across treatment (lesion versus occlusion), hemisphere (control versus 
experimental), and location (anterior-posterior coordinates). Mean values and standard 
error are shown. 
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No other simple main effects were significant. There was no significant main 

effect for treatment (lesion versus occlusion) F(1, 6) = 0.01, p = 0.920, hemisphere F(1, 6) 

= 39.38, p = 0.160, or location (anterior-posterior coordinates) F(3, 8) = 2.31, p = 0.111. 

In terms of interaction effects, the Region of E x Location interaction was 

significant F(3, 18) = 3.59, p = 0.034; see Figure 24). 
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Figure 24. Graph showing the mean number of PV-ir cells in both regions of E (inner 
versus outer) at each of location (anterior-posterior coordinates). Mean values and 
standard error are shown. 
 

No other two-way interaction effects were significant. Specifically, Region of E x 

Treatment F(1, 6) = 3.98, p = 0.093, Hemisphere x Treatment F(1, 6) = 0.62, p = 0.460, 

Region of E x Hemisphere F(1, 6) = 0.87, p = 0.388, and Location x Treatment F(3, 18) 

= 3.07, p = 0.054). Note, that this last interaction effect approached significance. 
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The following three-way interaction effects were significant, Region of E x 

Hemisphere x Treatment F(1, 6) = 6.77, p = 0.041, Region of E x Hemisphere x Location 

F(3, 18) = 4.21, p = 0.020, and Region of E x Treatment x Location F(3, 18) = 3.38, p = 

0.041. Figure 25 graphically depicts the Region of E x Hemisphere x Treatment 

interaction. Specifically, note that the number of PV-ir cells in E differs as a function of 

treatment condition and region.  
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Figure 25. Graph showing the mean number of PV-ir cells in E for each treatment 
condition (lesion versus occlusion), hemisphere (control versus experimental), and region 
of E (inner versus outer) across location (anterior-posterior coordinates). Mean values 
and standard error are shown. 

 

The Region of E x Hemisphere x Location interaction effect can be seen in Figure 

26. Specifically, note that the number of PV-ir cells in E differs as a function of 

hemisphere and region.  



www.manaraa.com

 52 

0

10

20

40

30

50

A9.00 A10.50

PV-ir Cells in E

Location (anterior-posterior coordinates)

Inner Region Control
Inner Region Experimental
Outer Region Control
Outer Region Experimental

60

A9.50 A10.00

 

Figure 26. Graph showing the mean number of PV-ir cells by hemisphere (control versus 
experimental), region of E (inner versus outer), and location (anterior-posterior 
coordinates) across both treatment conditions (lesion versus occlusion). Mean values and 
standard error are shown.  
 

The Region of E x Treatment x Location interaction effect can be seen in Figure 

27. 
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Figure 27. Graph showing the mean number of PV-ir cells by region of E (inner versus 
outer), treatment (lesion versus occlusion), and location (anterior-posterior coordinates) 
across both hemispheres. Mean values and standard error are shown. 
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The following interaction effects were not significant: Hemisphere x Location x 

Treatment F(3, 18) = 0.13, p = 0.936, Region of E x Hemisphere x Location x Treatment 

F(3, 18) = 0.25, p = 0.856.  

Regarding cell morphology, a cursory glance showed that no obvious physical 

differences in cell size and shape were observed between the inner region of E and those 

the outer region. However, it was apparent that there were differences in the density of 

PV fiber connections (neuropil). Therefore, an optical density analysis procedure was 

used to measure the density level of several different regions within E. 

 

Density of PV-ir neuropil in E. 

In order to determine if the density of PV-ir neuropil in E varied as a function of 

treatment condition, hemisphere, regions within E, and anterior-posterior location, a 

factorial mixed design ANOVA was conducted. The between subjects variable was 

treatment condition (lesion versus occlusion) and the repeated measures were hemisphere 

(control versus experimental), region within E (sample areas a - f), and location (anterior-

posterior coordinates: A10.50, 10.00, 9.50, 9.00),  

There were two significant main effects. First, the main effect of region within E 

(a - f) F(5, 30) = 12.32, p < 0.001 was significant (Figure 28). Post hoc comparisons 

using the Fisher LSD test revealed that the mean PV-ir neuropil density values of specific 

regions within E were different from one another. Region a (M = 0.63, SD = 0.11) had 

significantly more PV-ir neuropil than that found in region e (M = 0.53, SD = 0.11; t(30) 

= 2.614, p = .014, two-tailed). Also, region d (M = 0.65, SD = 0.14) had significantly 

more PV-ir neuropil than that found in region b (M = 0.56, SD = 0.11; t(30) = 2.567, p 



www.manaraa.com

 54 

= .015, two-tailed), region e (M = 0.53, SD = 0.11; t(30) = 3.217, p = .003, two-tailed), 

and region f (M = 0.56, SD = 0.11; t(30) = 2.565, p = .015, two-tailed). A summary of 

these comparisons can be found in Table 1. In addition, the main effect of treatment 

(lesion versus occlusion) was significant F(1, 6) = 11.08, p = 0.016; see Figure 29). 
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Figure 28. Graph showing the mean density value of PV-ir neuropil in the six target 
regions within E across treatment condition, hemisphere, and location. Mean values and 
standard error are shown. 
 

Table 1 
Pairwise Comparisons of Regions Within E 

Region Within E M SD   
a 0.63A 0.11  
b 0.56A 0.11  
c 0.59A 0.12  
d 0.65A 0.14  
e 0.53B 0.11  
f 0.56B 0.11   

 
Table 1. Means with the same letter in their superscripts do not differ significantly from 
one another according to a Fisher’s LSD test.   
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Figure 29. Graph showing the mean density value of PV-ir neuropil for both treatment 
conditions (lesion versus occlusion) across hemisphere, region within E, and location.  
 

There was not a significant effect for hemisphere (control versus experimental) 

F(1, 6) = 4.19, p = 0.087 or location (anterior-posterior coordinates) F(3, 18) = 0.08, p = 

0.967. 

However, there were significant interaction effects for Treatment x Hemisphere 

F(1, 6) = 16.25, p = 0.007. Specifically, the mean density value of PV-ir neuropil was 

greater for the control hemisphere than the experimental hemisphere for the lesion 

treatment condition. There was not a difference between the control and experimental 

hemispheres for the monocular occlusions (see Figure 30).  
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Figure 30. Graph showing the mean density value of PV-ir neuropil after unilateral lesion 
and monocular occlusion across the different regions within E and all locations (anterior-
posterior coordinates). Mean values and standard error are shown.  
 

Figure 31. further shows the density differences of six regions within E.  
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Figure 31. Graph showing the mean density value of PV-ir neuropil after unilateral lesion 
and monocular occlusion for each hemisphere at each of the different regions within E. 
Mean values and standard error are shown.  
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 In addition, the Location x Region within E interaction effect was significant F(15, 

90) = 2.25, p = 0.010; see Figure 32).  
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Figure 32. Graph showing the mean density value of PV-ir neuropil at each of the regions 
within E and all four locations (anterior-posterior coordinates) across treatment condition 
and hemisphere. Mean values and standard error are shown.  
 

The following interactions were not significant: Location x Treatment F(3, 18) = 

0.63, p = 0.605, Region within E x Treatment F(5, 30) = 0.46, p = 0.801, Hemisphere x 

location F(3, 18) = 0.19, p = 0.900, Hemisphere x Location x Treatment F(3, 18) = 0.49, 

p = 0.693, Hemisphere x Region within E F(5, 30) = 0.17, p = 0.971, Hemisphere x 

Region within E x Treatment F(5, 30) = 0.62, p = 0.682, Location x Region within E x 

Treatment F(15, 90) = 0.99, p = 0.471, Hemisphere x Location x Region within E F(15, 

90) = 0.52, p = 0.922, and Hemisphere x Location x Region within E x Treatment F(15, 

90) = 1.38, p = 0.174. 
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CO Histochemistry 

In total, ten cases were processed for CO. However, the tissue in some of these cases was 

not suitable for analysis. Therefore, the brain tissues of seven birds (three in the unilateral 

lesion condition and four in the monocular occlusion condition) were processed to detect 

CO staining in E. Below are microphotographs showing E on the control and 

experimental hemispheres at each of the four different locations (anterior-posterior 

coordinates) for all of the birds. 
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Individual CO cases. 

PG234 (Unilateral Lesion) CO density (Figure 33).  

 

Figure 33. Microphotographs of PG234 showing the distribution pattern of CO in E after 
unilateral lesion. For this case, the left Rt was destroyed. Scale bar = 500 µm. 
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PG259 (Unilateral Lesion) CO density (Figure 34). 
 

 
 

Figure 34. Microphotographs of PG259 showing the distribution pattern of CO in E after 
unilateral lesion. For this case, the left Rt was destroyed. Scale bar = 500 µm. 
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PG254 (Unilateral Lesion) CO density (Figure 35).  

 

Figure 35. Microphotographs of PG254 showing the distribution pattern of CO in E after 
unilateral lesion. For this case, the right Rt was destroyed. Scale bar = 500 µm. 
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PG264 (Monocular Occlusion) CO (Figure 36). 
 

 
 

Figure 36. Microphotographs of PG264 showing the distribution pattern of CO in E after 
monocular occlusion. For this case, the right eye was occluded. Scale bar = 500 µm. 
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PG263 (Monocular Occlusion) CO (Figure 37). 
 

 
 

Figure 37. Microphotographs of PG263 showing the distribution pattern of CO in E after 
monocular occlusion. For this case, the left eye was occluded. Scale bar = 500 µm. 
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PG256 (Monocular Occlusion) CO (Figure 38). 
 

 
 

Figure 38. Microphotographs of PG256 showing the distribution pattern of CO in E after 
monocular occlusion. For this case, the left eye was occluded. Scale bar = 500 µm. 
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PG260 (Monocular Occlusion) CO (Figure 39). 
 

 

Figure 39. Microphotographs of PG260 showing the distribution pattern of CO in E after 
monocular occlusion. For this case, the right eye was occluded. Scale bar = 500 µm. 

 

Density of CO staining in E. 

In order to determine if the density of CO activity normally present in E varied as 

a function of treatment condition, hemisphere, region within E, and location (anterior-

posterior coordinates), a factorial mixed design ANOVA was conducted. The between 

subjects variable was treatment condition (lesion versus occlusion) and the repeated 
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measures were hemisphere (control versus experimental), region within E (a - f), and 

location (anterior-posterior coordinates: A10.50, 10.00, 9.50, 9.00). 

There was a significant main effect for region within E (a - f) F(5, 25) = 6.51, p = 

0.001 indicating that there are differences in the mean density value of CO staining in the 

six different target regions within E across treatment condition, hemisphere, and location 

(anterior-posterior coordinates; see Figure 40). Post hoc comparisons using the Fisher 

LSD test revealed that the mean CO staining density value of specific regions within E 

were different from one another. Region a (M = 0.88, SD = 0.20) had significantly more 

CO staining than that found in region e (M = 0.62, SD = 0.22; t(25) = 2.432, p = .022, 

two-tailed). Also, region e (M = 0.62, SD = 0.22) had significantly less CO staining than 

that found in region c (M = 0.85, SD = 0.23; t(25) = .188, p = .038, two-tailed) and region 

f (M = 0.84, SD = 0.27; t(25) = 2.094, p = .046, two-tailed). A summary of these 

comparisons can be found in Table 2. 
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Figure 40. Graph showing the mean density value of CO activity in the six target regions 
within E across treatment condition, hemisphere, and location (anterior-posterior 
coordinates). Mean values and standard error are shown. 
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Table 2 
Pairwise Comparisons of Regions Within E 

Region Within E M SD   

a 0.88A 0.20  
b 0.74A 0.18  
c 0.85A 0.23  
d 0.82B 0.29  
e 0.62B 0.22  
f 0.84A 0.27   

 
Table 2. Means with the same letter in their superscripts do not differ significantly from 
one another according to a Fisher’s LSD test. 

 

The following main effects were not significant: treatment (lesion versus 

occlusion) F(1, 5) = 0.14, p = 0.726, hemisphere (control versus experimental) F(1, 5) = 

1.60, p = 0.262, and location F(3, 15) = 0.96, p = 0.437.  

However, there was a significant Hemisphere x Treatment interaction effect F(1, 

5) = 11.14, p = 0.021), meaning that the difference in CO activity between hemispheres 

was dependent on the treatment condition (see Figure 41). 
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Figure 41. Graph showing mean density value of CO activity after unilateral lesion and 
monocular occlusion across all six regions within E and across all four locations 
(anterior-posterior coordinates). Mean values and standard error are shown.  
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Furthermore, the Hemisphere x Treatment x Region within E interaction effect 

was significant F(5, 25) = 7.84, p < 0.001). Figure 42 shows the density differences of 

CO in six different regions. 
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Figure 42. Graph showing the mean density value of CO activity for each hemisphere, 
treatment condition, and the six target regions within E across location (anterior-posterior 
coordinates). Mean values and standard error are shown. 
 

 The following interaction effects were also significant: location had an interaction 

effect with region within E F(15, 75) = 2.34, p = 0.008) (see Figure 43), and hemisphere 

interacted with region within E F(15, 25) = 3.165, p = 0.024) (see Figure 44). No other 

interactions were significant.  
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Figure 43. Graph showing the mean density value of CO activity at each of the six 
regions within E and at all locations (anterior-posterior coordinates) across treatment 
condition and hemisphere. Mean values and standard error are shown. 
 
Below, is a graph showing the mean density values of CO and PV together. Notice that 
the staining pattern is more differential for CO than for PV.  
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Figure 44. Graph showing the mean density value of CO and PV activity at each of the 
six regions within E and at all locations (anterior-posterior coordinates) across treatment 
condition and hemisphere. Mean values and standard error are shown. 
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Figure 45. Graph showing the mean density value of CO activity at each of the six 
regions within E for both hemispheres across treatment condition (lesion versus occlusion) 
and location (anterior-posterior coordinates). Mean values and standard error are shown.  
 

ZENK Immunohistochemistry 

Eleven pigeons (five in the unilateral lesion condition and six in the monocular 

occlusion condition) were used to visualize ZENK-ir cells of NIL. Below, composite 

microphotographs (consisting 42 original photos) of ZENK-ir for each hemisphere are 

presented for individual cases. They are accompanied by corresponding images showing 

ZENK-ir distribution patterns visualized by the Maxima transformation method. Based 

on these digitized images, the putative NIL is specified as the region surrounded by DA 

and the caudal end of E, which extended from A 7.00 to A6.00. 
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Individual ZENK cases. 

PG234 (Unilateral Lesion) ZENK-ir cells in NIL (Figure 46).  

 

Figure 46. Microphotographs and corresponding transformed images of PG234 showing 
the distribution pattern of ZENK in the telencephalon after unilateral lesion. The putative 
NIL is specified by dotted lines in the digitized images. For this case, the left Rt was 
destroyed. Scale bar = 1 mm. 
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PG236 (Unilateral Lesion) ZENK-ir cells in NIL (Figure 47).  

 

Figure 47. Microphotographs of PG236 showing the distribution pattern of ZENK in the 
telencephalon after unilateral lesion. The putative NIL is specified by dotted lines in the 
digitized images. For this case, the right Rt was destroyed. Scale bar = 1 mm. 
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PG239 (Unilateral Lesion) ZENK-ir cells in NIL (Figure 48).  

 

Figure 48. Microphotographs of PG239 showing the distribution pattern of ZENK in the 
telencephalon after unilateral lesion. The putative NIL is specified by dotted lines in the 
digitized images. For this case, the left Rt was destroyed. Scale bar = 1 mm. 
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PG254 (Unilateral Lesion) ZENK-ir cells in NIL (Figure 49).  

 

Figure 49. Microphotographs of PG254 showing the distribution pattern of ZENK in the 
telencephalon after unilateral lesion. The putative NIL is specified by dotted lines in the 
digitized images. For this case, the right Rt was destroyed. Scale bar = 1 mm. 
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PG259 (Unilateral Lesion) ZENK-ir cells in NIL (Figure 50).  

 

Figure 50. Microphotographs of PG259 showing the distribution pattern of ZENK in the 
telencephalon after unilateral lesion. The putative NIL is specified by dotted lines in the 
digitized images. For this case, the left Rt was destroyed. Scale bar = 1 mm. 
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PG253 (Monocular Occlusion) ZENK-ir cells in NIL (Figure 51).  

 

Figure 51. Microphotographs of PG253 showing the distribution pattern of ZENK in the 
telencephalon after monocular occlusion. The putative NIL is specified by dotted lines in 
the digitized images. For this case, the left eye was occluded. Scale bar = 1 mm. 
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PG264 (Monocular Occlusion) ZENK-ir cells in NIL (Figure 52).  

 

Figure 52. Microphotographs of PG264 showing the distribution pattern of ZENK in the 
telencephalon after monocular occlusion. The putative NIL is specified by dotted lines in 
the digitized images. For this case, the right eye was occluded. Scale bar = 1 mm. 
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PG170 (Monocular Occlusion) ZENK-ir cells in NIL (Figure 53).  

 

Figure 53. Microphotographs of PG170 showing the distribution pattern of ZENK in the 
telencephalon after monocular occlusion. The putative NIL is specified by dotted lines in 
the digitized images. For this case, the left eye was occluded. Scale bar = 1 mm. 



www.manaraa.com

 79 

PG263 (Monocular Occlusion) ZENK-ir cells in NIL (Figure 54).  

 

Figure 54. Microphotographs of PG263 showing the distribution pattern of ZENK in the 
telencephalon after monocular occlusion. The putative NIL is specified by dotted lines in 
the digitized images. For this case, the left eye was occluded. Scale bar = 1 mm. 
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PG256 (Monocular Occlusion) ZENK-ir cells in NIL (Figure 55).  

 

Figure 55. Microphotographs of PG256 showing the distribution pattern of ZENK in the 
telencephalon after monocular occlusion. The putative NIL is specified by dotted lines in 
the digitized images. For this case, the left eye was occluded. Scale bar = 1 mm. 
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PG260 (Monocular Occlusion) ZENK-ir cells in NIL (Figure 56). 

 

Figure 56. Microphotographs of PG260 showing the distribution pattern of ZENK in the 
telencephalon after monocular occlusion. The putative NIL is specified by dotted lines in 
the digitized images. For this case, the right eye was occluded. Scale bar = 1 mm. 
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Number of ZENK-ir neurons in NIL. 

In order to determine if the number of ZENK-ir neurons in NIL varied as a 

function of treatment condition and hemisphere, a 2 x 2 mixed groups factorial ANOVA 

was conducted. The between subjects variable was the treatment with two levels (lesion 

and occlusion) and the within subject measure was hemisphere (control and 

experimental). Data from two anterior-posterior locations (A7.00 and A6.00) were 

combined for the analysis since ZENK distribution patterns were similar between them. 

Figure 57 shows the mean number of ZENK-ir neurons found in the NIL target regions 

after unilateral lesion and monocular occlusion. The results showed that there was a main 

effect for hemisphere F(1, 9) = 94.14, p < 0.001) meaning that regardless of the treatment 

(lesion or occlusion), there was a difference between the mean number of ZENK-ir cells 

in the control NIL versus the experimental NIL. There was not a significant effect for 

treatment F(1, 9) = 0.50, p = 0.498). The Hemisphere x Treatment interaction effect was 

not significant either F(1, 9) = 1.30, p = 0.283) 
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Figure 57. Graph showing the mean number of ZENK-ir cells counted in the control and 
experimental hemispheres for both treatment groups (lesion and occlusion). Mean values 
and standard error are shown. 
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Discussion 

The specific aims of this study were to: 1) identify distinct anatomical subregions 

within the primary visual structure (E) in the telencephalon, 2) define the size and extent 

of another telencephalic structure NIL, and 3) determine the extent to which activity in 

these two telencephalic structures is dependent on neural input and visual signal. 

Each of these specific aims was addressed by analyzing the distribution patterns 

of various cellular activity markers. Overall, these activity patterns showed that visual 

cell groups in the telencephalon were differentially affected not only between the various 

treatment conditions (lesions versus occlusions), but also within these conditions. In 

particular, PV and CO facilitated the identification of specific subregions in E (Aim One). 

Furthermore, mapping the cellular activity of ZENK in the telencephalon made it 

possible to determine the size and shape of NIL (Aim Two). Lesion and occlusion 

procedures had differential effects on the expression of PV-ir and CO staining in E, but 

not the ZENK expression in NIL (Aim Three). These results provided new information 

about the anatomical definitions, and suggest possible functional segregations of the 

telencephalic visual areas.  

For Specific Aim One, there were significantly more PV-ir cell bodies in the inner 

region of E compared to the outer region. These results are congruent with the findings 

by Krützfeldt and Wild (2005), who showed that E can be separated based on the levels 

of PV-ir expression. While their conclusion was based on non-quantitative visual 

observations, the present study confirmed their observation based on quantitative analysis. 
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The statistical results showed that the interaction effect between Region within E and 

Location was significant, suggesting that the inner vs. outer regional differentiation 

varied by the location along the anterior-posterior axis. Furthermore, the three-way 

interaction analyses showed that Region variables interacted with 1) Hemisphere and 

Treatment, 2) Hemisphere and Location, and 3) Treatment and Location variables. These 

results suggest that the regional differences of PV-ir cells were more or less affected by 

different variables, including the anterior vs. posterior locations, lesion vs. occlusion 

conditions, and targeted vs. control hemispheres. However, in all experimental conditions 

analyzed in the study, the inner region had consistently more PV-ir cells than the outer 

region. Therefore, the PV-ir expression difference between the inner and outer regions is 

consistent regardless of these variables. The present results found that cells in the inner 

and outer regions were not obviously different in cell size and type. Thus, the difference 

of PV-ir cells between inner and outer regions is primarily in density, not in morphology. 

In terms of the PV-ir neuropil, the results were slightly different from the cell 

body pattern. When the PV-ir neuropil density was compared between the outer regions 

(b and c; mean = 0.576) and inner regions (e and f; M = 0.55), no clear differences were 

observed, unlike the PV-ir cell bodies. The results showed that the expression patterns of 

PV-ir cell bodies and neuropil in E are not identical, suggesting that they were controlled 

by different mechanisms.  

The regional differences among the six areas within E were significant as well as 

the Region within E x Location (anterior-posterior coordinates) interaction. In particular, 

the ventrolateral E (region d) tended to have a higher density of PV-ir neuropil than other 

regions except the most ventromedial area (region a) which was also high in PV-ir 
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(Figure 28). This difference between regions was more obvious in the anterior locations 

than in the posterior locations (Figure 32). It is possible that the intensity difference 

among areas is related to a topographical organization of the Rt-E projection pattern. For 

instance, the region d may receive distinct projections from a specific part of Rt. 

However, further studies are necessary to understand the significance of the specific 

subregion since little is known about the internal organization of E, including this region. 

Region a appeared to be distinct in terms of PV-ir neuropil, in that it did not appear to be 

as affected by either treatment condition compared to the other five regions (Figure 28). 

It is likely that this region receives input from some location other than Rt. A study by 

Gamlin and Cohen (1986) used anterograde autoradiographic and retrograde pathway 

tracing techniques to show an additional projection from the optic tectum to the nucleus 

dorsolateralis posterior of the thalamus (DLP). One of the main findings of this study 

showed that anterograde tracers injected into the caudal portion of DLP (DLPc) project to 

a discrete region of the ipsilateral telencephalon. This cytoarchitecturally distinct cell 

group matches with region a in the current study. Thus, it is likely that the lesion to Rt 

had little effect on region a due to the likelihood that this region is receiving DLP 

terminations.  

As for CO staining, the overall pattern of the current study agrees with the results 

of Hellmann et al. (1995). The six different regions of E examined in Hellmann et al. 

(1995) roughly corresponded to the six regions that were analyzed in the present study. 

The current findings are similar to theirs in the respect that many of these areas showed 

similarly intense staining patterns. Furthermore, both studies found that the ventro-

intermedial area (region e) showed a low level of CO staining compared to the other 
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areas. It is possible that the low CO intensity in this region is associated with the fact that 

massive thalamo-telencephalic projection fibers are passing through this region. Thus, 

CO activity may not be expressed much in these passing fibers in the region e.  

Hellmann et al. (1995) found that the dorsolateral area (region c) also had low CO 

staining intensity whereas the present study did not show such a pattern. A closer look at 

this region suggests that the dorsolateral border of E in the present study was defined 

more conservatively than the previous study, which encroached into a further dorsal area 

including dense efferent fiber passages of E. In the Hellmann et al. (1995) study, the CO 

activity in this region was low because this dorsolateral region included passing fibers 

whereas the present study did not. As in the PV-ir neuropil, no clear difference was found 

for CO staining patterns to separate between the inner and outer regions.  

The results of CO staining patterns, together with those of PV-ir cell and neuropil 

patterns, suggest that E consists of multiple distinct subregions. Specifically, the present 

study concludes that the density of PV-ir cell bodies can be used to clearly distinguish the 

inner and outer subregions within E. The PV-ir neuropil and CO activity patterns show 

that further subregions exists within the inner and outer regions, indicating a complex 

heterogeneity within E. The current findings will be used to further refine the identity of 

E subdivisions, providing a map of these subregions that may, in turn, reflect 

physiologically and functionally distinct cell groups within E. 

For Specific Aim Two, the expression of protein product of zenk was examined in 

the nidopallium by comparing the hemispheres in both treatment conditions (lesions and 

occlusions). There was a significant reduction of ZENK-ir cell bodies on NIL in the 
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experimental hemisphere compared to control side. Based on the differential expression 

of ZENK, it was possible for the first time to visualize the location of NIL.  

To accomplish the visualization, the newly developed image analysis was used 

(Mahmud, 2008), and, the distribution patterns of ZENK positive cells were more 

accurately identified in low-power images than any previous analysis. Based on these 

images, the present study showed that the nidopallial area dorsocaudal to E, ventromedial 

to DA, in the control hemisphere had a significantly high density of ZENK positive cells 

(Figures 46 - 56) compared to the corresponding area in the control side (Figure 57). The 

putative NIL is 3 - 4 mm in the anterior-posterior axis, 2 - 2.5 mm in the dorsal ventral 

axis, and 1 - 1.5 mm along the lateral-medial axis. This definition is rather conservative 

because the borders with the surrounding regions are difficult to differentiate 

cytoarchitectonically. The ZENK expression might also be more heterogeneous within 

NIL than assumed in the present study. Thus, the real NIL may even larger than the 

putative NIL discussed in the study. 

Although the exact functional significance of NIL remains unclear, the fact that 

ZENK expression in NIL was significantly influenced by disrupting visual input suggests 

that this structure is important for higher-order visual processing. The expression of zenk 

gene and its protein product have been used for identifying higher-order auditory and 

vocal brain areas in songbirds. For example, the level of the mRNA transcribed from zenk 

is expressed strongly in certain structures within the specific auditory areas in the 

telencephalon during song acquisition by juvenile birds (Jin & Clayton, 1997) and the 

perception of song by adults (Mello et al., 1992; Mello & Clayton, 1995; Jarvis et al., 

1995). Zenk genes are also known to play a major role in the consolidation of long-term 
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auditory memories in these higher auditory regions (Tischmeyer & Grimm, 1999; Davis, 

Bozon, & Laroche, 2003). Based on the similarities with the higher auditory areas in 

songbirds in terms of the connection and ZENK expression patterns, it is possible that 

NIL is similarly involved in the higher-order visual learning and memory of biologically 

relevant events such as encounters with potential mates. If so, the results suggest that 

biologically relevant auditory and visual information is processed in a similar manner in 

the avian telencephalon. The finding will be of importance for understanding the general 

neural principles of sensory information processing. 

Using the new digital imaging protocol for signal detection and distribution 

analysis (Mahmud 2008), the results showed that ZENK immunoreactivity was only 

found in the nucleus region of each positive cell and thus characterized by a 

morphologically highly uniform appearance from cell to cell. The new protocol took 

advantage of this uniformity and succeeded in accurately generating a low-power 

graphical representation of signal density patterns. This method proved to be extremely 

useful for the present study, and should be valuable for analyses in similar quantitative 

studies, especially when the target signals are relatively uniform in terms of size and 

morphology.  

In contrast to NIL, much fewer ZENK positive cells were observed in E, as well 

as other primary sensory areas such as Field L and n. basolateralis. The lack of ZENK 

expression in the primary sensory areas is consistent with previous studies (Ruscio & 

Adkins-Regan, 2004; Thode, Bock, Braun, & Darlison, 2005).  
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Regarding specific Aim Three, the results showed that Treatment (lesions vs. 

occlusions) had significant effects for PV-ir neuropil and CO staining in E, but no 

differential effects were found for ZENK-ir in NIL. 

As for PV-ir, the numbers of cell bodies were not affected by either lesion or 

occlusion treatment (Figure 25). However, lesions caused a significant reduction of PV-ir 

neuropil density in the experimental hemisphere, but not in the control hemisphere. This 

effect was not observed after occlusions.  

As for the CO patterns, the results also showed that lesions caused a significant 

reduction of CO staining in the experimental hemisphere, but not in the control 

hemisphere. This effect was not observed after occlusions. In addition, there were 

differential staining patterns for CO at each of the six different regions of E. These 

regional differences were significant and were dependent on the location along the 

anterior-posterior axis and hemisphere. 

Why did occlusions not have a significant effect compared to lesions in the PV-ir 

neuropil and CO staining? In the lesion condition, visual processing of E in the 

experimental hemisphere was disrupted by destroying the unilateral Rt and thus 

destroying the entire thalamic input to E. In the occlusion condition, visual processing of 

E in the experimental side was interrupted by occluding the contralateral eye, but the 

thalamic connection from Rt to E remained physically intact. Thus, E could still receive 

visual input from the ipsilateral eye via the inter-hemispheric connections. It is most 

likely that the ipsilateral input played a role to maintain the PV expression in E for the 

occlusion condition, whereas no such input existed in the lesion condition.  
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However, there are at least two other possible explanations for the results. It is 

possible that PV in E was transported from cell bodies of Rt to terminals in E, and thus Rt 

lesions, but not monocular occlusions, caused the reduction effect. However this 

possibility is unlikely because no PV was observed in cell bodies of Rt although there 

were abundant PV-ir neuropil. In terms of CO activity in E, they might be present mainly 

in terminals of Rt fibers, but not intrinsic fibers in E. Thus, lesions of the thalamic fibers 

caused more significant effects in the CO activity than occlusions. 

Another possibility is that lesions had more acute and quick impacts than 

occlusions in the PV-ir and CO in E. It is possible that the difference in the effect of 

treatment condition might be similar if the occlusion period was longer than one week. 

That is, perhaps the visual information must be blocked for a longer period of time in 

order to significantly alter the levels of PV and CO.  

Could the size of the lesion affect the pattern of PV immunoreactivity and CO 

staining in E? It is possible, but not likely, due to the fact that the four cases analyzed for 

this specific aim (PG234, PG254, PG259, PG47) received extensive lesions covering 

most, if not all, of Rt (see Figures 11-14). 

As for ZENK-ir in NIL, both the lesion and occlusion treatments resulted in 

significant reductions of ZENK expression in NIL. The results are similar to a previous 

study (Hara, Kubikova, Hessler, & Jarvis, 2009), in which monocular occlusions had 

been performed to investigate visual telencephalic brain structures. The present study is 

the first to use thalamic lesions as well as monocular occlusions to show similar results in 

ZENK-ir in the visual telencephalon. Because there were no clear treatment effects, the 

results provide three important insights about the high visual telencephalic structures in 
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birds. First, the similar findings in both treatment conditions suggest that visual input to 

NIL from the ipsilateral thalamus through E is essential for the expression of ZENK-ir 

cells in NIL. Under the assumption that ZENK is involved in the long-term memory 

formation, this indicates that the possible learning and memory function of NIL is 

dependent upon the ipsilateral thalamic input. Second, the presence of interhemispheric 

connections in the occlusion treatment did not contribute to the maintenance of a high 

level of ZENK-ir in NIL. The fact that occlusions caused the same pattern of ZENK-ir as 

lesions suggests that information via any interhemispheric connections did not trigger 

sufficiently the ZENK expression in NIL. Finally, the results suggest that ZENK 

expression is more sensitively affected by the event that occurred just prior to the 

treatment compared to PV-ir or CO-staining, which were not significantly influenced by 

the occlusion procedure. It is also important to note that the occlusion procedure in the 

most peripheral organ affected the protein expression in one of the highest visual areas in 

the avian visual system. In this sense, the analysis of ZENK distribution is one of the 

most powerful techniques to study molecular consequences of real-time events on 

different brain regions, even in the higher telencephalic regions as reported here. 

In conclusion, the present study revealed the complex heterogeneity of the avian 

visual telencephalon, which had been considered to be a rather homogenous entity. This 

anatomical finding provides new information about how visual processing is carried out 

in the non-mammalian cerebrum, and will be the foundation for future anatomical, 

physiological, and functional studies. In particular, the present study suggests that 

subdivisions of E are organized in a topographic manner, and a more detailed 

topographical map of E, as well as NIL, will be useful in order to delineate the whole 
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picture of the avian visual telencephalon. The significance of visual information 

exchange between the left and right hemispheres needs to be further explored as well. In 

the avian brain, there are multiple inter-hemispheric connections in the tectofugal visual 

route, including the tectal commissure, supraoptic decussation, and extra-telencephalic 

descending routes (see Figure 1). The role of these visual connections must be studied 

individually and compared with the mammalian counterparts. These studies will 

eventually reveal the general and specific neural rules associated with visual processing 

in vertebrates.  
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Appendix A 
 
 
A protocol for conducting optical density analysis.  
Photographs 

All photographs were taken using Wild Makroscope. 
Apo lens Magnification: 25 
Aperture: half 
Light source: 9 V 

 
Protocol 1 – No-Normalization Method  

-Open macrophoto of section in ImageJ 
-In “Image” menu, change “Type” to “8-bit” 
-In “Analyze” menu, select “Calibrate” 
-In “Calibrate” window, select “Open” 
-In file menu, select “OD calibration” file (I/Willottlab/NIAD/CO/OD 
analysis/OD calibration); change “Function” to “Rodbard”, and for “Unit” type 
“O.D.” 
-Use “Rectangular selections” tool to make a 250 X 250 µm (0.0625 mm2) for 
measuring the different regions within E 
-In “Analyze” menu, select “Measure” 
-The measurement “Results” window data can be saved in Excel format (.xls) 
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Appendix B 
 
 
A New Digital Imaging Protocol for Signal Detection and Distribution Analysis 

Protocol Instructions: 
1. Open ImageJ 
2. Open Digital Photograph of Stained Slide 
3. If Noise Tolerance Calibration is necessary follow Step 4 – if not go to step 12 
4. Zoom in on picture until signals are visible 
5. Using the “Rectangle Select Tool” select a segment within the image 
6. Manually count and make note of every signal 
7. Select Find Maxima under Binary sub-menu within Process menu 
8. Select “Preview Point Selection” 
9. Enter various numbers within the “Noise Tolerance” field until every signal 
manually counted is correctly labeled (with no extras or none missing) – make 
note of the value 
10. Close Maxima Window 
11. Deselect Selection (single-click any part of picture) 
12. Select Find Maxima under Binary sub-menu within Process menu 
13. Enter value in “Noise Tolerance” based on the previous calibration step 
14. Select “Light Background” if slide has a lighter background compared to the 
signals 
15. Select “Single Points” under the “Output Type” drop-down menu 
16. Click “OK” 
17. Select Dilate under Binary sub-menu within Process menu 
18. Repeat step 17 until dots are the same size as a typical signal 
19. Save the Maxima image as either TIFF or JPEG 
A New Digital Imaging Protocol 22 
20. Open GIMP 
21. Open Maxima image from step 19 
22. Select Mosaic under Distorts sub-menu within Filters menu 
23. Set and Select following parameters: Square tiling, 0 tile height, 1.0 tile 
spacing, 1.0 tile neatness, 0 light direction, 0 color variation, checked antialiasing, 
checked color averaging, unchecked tile splitting, unchecked pitted surfaces and 
checked FG/BG lighting (make sure foreground and background colors are black 
and white respectively). 
24. Set “Tile Size” 
25. Click “OK” 
26. Select RGB under Mode sub-menu within Image menu 
27. Select gradient in gradient menu of toolbox 
28. Select Gradient Map under Map sub-menu within Color menu 
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